高考数学大题的解题分数是按照步骤给分的,一般的大题类型有:三角函数、三角函数、立体几何、数列、圆锥曲线、函数与导数这六大类。掌握好答题技巧,分数就会提高。
1.第一道大题:三角函数
总共两种考法:10%~20%是解三角形,80%~90%是考三角函数本身。
解三角形
不管题目是什么,你要明白,关于解三角形,你只学了三个公式:正弦定理、余弦定理和面积公式。
所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试未尝不可。
三角函数
套路:给你一个比较复杂的式子,然后问这个函数的定义域、值域、周期频率、单调性等问题。
解决方法:首先利用“和差倍半”对式子进行化简。化简成形式,然后求解需要求的。
2.第二大题:三角函数
我总感觉,这块没啥可说的。因为考的不多而且非常容易。详细内容翻看一下小数老师历史推送的文章就够用了。
3.第三道大题:立体几何
这个题,相比于前面两个给分的题,要稍微复杂一些,可能会卡住某些人。
这题有2-3问。
第一问:某条线的大小或者证明某个线/面与另外一个线/面平行或垂直;
最后一问是求二面角。
这类题解题方法有两种,传统法和空间向量法,各有利弊。
向量法
优点:没有任何思维含量,肯定能解出最终答案。
缺点:计算量大,且容易出错。
应用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为。然后进行后续证明与求解。
传统法
4.第四道大题:数列
从这里开始,就明显感觉题目变难了,但是掌握了套路和方法,这题并不困难。
数列主要是求解通项公式和前n项和。
5.第五道大题:圆锥曲线
高考对于圆锥曲线的考察也是有套路可循的。一般套路就是:前半部分是对基本性质的考察,后半部分考察与直线相交。
6.第六道大题:函数与导数
导数与函数的题型,大体分为三类。
1,关于单调性,最值,极值的考察。
2,证明不等式。
3,函数中含有字母,分类讨论字母的取值范围。
高考数学答题的原则
1、先易后难
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪
2、先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的
3、先同后异
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
4、先小后大
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题嬴得时间,创造一个竞松的心理基础。
5、先点后面
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必—气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面
6.先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。