高中二年级物理学科的思维特征
1.模型化
物理学科的研究,以自然界物质的结构和最常见的运动形式为内容。对于那些纷繁复杂事物的研究,第一就需要抓住其主要的特点,而舍去那些次要的原因,形成一种经过抽象概括了的理想化的典型,在此基础上去研究典型,以发现其中的规律性,打造新的定义。这种以模型概括复杂事物的办法,是对复杂事物的适当的简化。而抽象概括和简化的过程,也正是人脑对事物的思维加工过程。模型就是一种概括的反映,就是定义,亦即是一种思维的形式。
把握好物理模型的思维,是学生学物理的困难所在之一。然而,在中学习物理教学中,模型占有要紧的地位。物理教学,第一是引导学生步入模型这个思维的大门,适应并学会这种思维形式,拥有学会物理模型的思维能力。
2.多级性
任何一门学科,其内容都不会是孤立的存在,不可防止地会与其他学科有多少的联系。在本学科内,一个物理问题的提出、解决,其后所牵涉到的问题,可能有很多个环节,问题的解决所经历的思维过程,总是需要分作几个过程、阶段或几个方面、几步。须经历剖析、综合的相互转换,往复循环,逐级上升。本文谓此特征为物理思维的多级性。
通常说,物理思维的多级性,亦包括了模型的转换。无疑,这种思维的多级性,需要更高的思维能力,这是对于思维能力培养的一次推进。而对于步入新阶段学习的学生来讲,是一个新的水平,也是对思维惰性的一个冲击。从开设物理课开始,便需小心不断地引导并培植学生发现新问题、解决新问题的敏锐能力,鼓励学生勤于钻研、深于追究的思维品质。
3.多向性
很多物理问题的解决,并不仅有一种方法。同一个问题,从不一样的方面出发,用不一样的办法,都可以得到同一个结果。
还有一些问题则不同,并不仅有一个结果存在,需要作全方位的剖析。而解决这种问题所需要的思维过程,须是开放性的。即依据肯定的常识或事实,灵活而全方位地寻求对问题的各种可能的答案。这种特征,被称作发散思维或求异思维。
求异、发散是思维的灵活性、广阔性的体现,需要个体具备能从常规、呆板或带有偏见的思维方法中解脱出来,把思维从过去历过的路上转移开来,以探求新的解决方法,又能从不一样的角度、方向、方面去考虑问题,用多种办法去解决问题。
而且,在考虑中能灵活地进行剖析和综合的转换,全方位地把握问题,细心地权衡哪些思维是有利的,哪些思维是正确的。
4.表述的多样性
物理问题的表达方法也是多种多样的。比如表述物理规律,可以用文字叙述,也可以用公式表示,还可以借用于画图像。有的问题还可以用各种图示。定义的表述,亦有类似的方法。每一种表述,都是一种语言,同样是一种思维。
这种表述的多样性,在解决问题的过程中,需要第一对思维的办法要加以选择、优化。选择和优化是对思维的批判性品质的表现,也是思维灵活性品质的表现。物理教学,就需培养学生选择表述方法的意识,掌握并学会物理语言,准确地运用适合的语言考虑、论述物理问题的习惯和能力。
5.思维的转换
思维的转换是物理思维的又一个特征。它需要个体准时地更换我们的思维方向,转换思维的方法,改变语言表达方法,以更简捷、有效的方法进行剖析、综合。研究对象的转换、物理模型的转换、物理模型和数学模型的转换等是容易见到的。
思维的转换,既是物理思维的特征,也是学生学物理甚觉困难的又一所在。
思维的转换,是思维的灵活性品质的体现,在物理教学中,需要有意识地培植这种品质。
6.假设与验证
为着解决某一问题的思维,所需要经历的步骤,通常说有如下四步,即发现问题、认清问题、提出假设、验证假设得出结论。而其中的假设与验证是思维过程的中心环节或重要环节。在解决有多种可能的问题时,结论与假设有关的,需要加以验证。验证假设的思维是人的认识深化的过程。验证的办法,可以是间接的办法,即推理的办法,也可以是直接的检查,即知觉的办法。但无论以什么样的办法来作验证,都直接地培养了学生思维的广阔性和深刻性。
7.等效思维
等效办法的运用,是物理思维的又一个特征。所谓等效,即成效相同。比如矢量的合成分解、等效电路等属之,都是简化复杂问题的办法。把复杂的对象等效作一个模型,以便可以应用已有些常识去处置。这种等效处置的办法本身,就是一种思维。
8.实践性
物理常识的另一个特征是它与实践的紧密联系。很多常识是实践察看的概要。
就其源自实践而又应用于技术这一点讲,物理常识是很具体的、通俗的。而就其概括实践来讲,无论是初级经验的概括,还是高级科学的概括,它又是那样抽象,既具体又抽象的特征,需要解决物理问题的思维,需要具备相应的特征。
一些论述需要作抽象的概括,而另一些论述则需要考虑到现实情况,作联系实质的考虑。脱离实质势必致使思维的谬误。因而,在物理教学中,需要时刻注意联系实质,以期培养学生具备既能(河南作抽象的概括,又能具体地应用、联系实质的思维品质。