今天教育部考试中心发布了2022年考研数学 大纲。今年的考研数学 大纲基本与去年的大纲保持一致。在线性代数科目中,试题难易程度变动虽有区别但也趋于稳定。命题的重点仍是基本概念、基本性质和基本方法。下面就线性代数的基本考情和特点做一个分析。
考研线性代数一共包含六章的内容:行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型。考试题型分为选择、填空和解答,基本的工具有行列式、矩阵、秩、特征值与特征向量,可能出选择填空题的内容主要是行列式的计算、矩阵的秩、相关无关、解的判定、矩阵的特征值特征向量、矩阵的合同与相似、正定二次型的判定。其中2023年考到了行列式、秩、向量组的解、线性表出、正负惯性指数的内容。可能出解答题的内容,往年有(1)向量与方程组结合的题目,比如把判断相关无关及能否线性表出,转化为齐次或齐次线性方程组有解无解的问题;(2)向量、特征值与特征向量或二次型的题目,这部分题目往往计算量比较大。其中2023年数学一大题考到了二次型部分的正交矩阵和正定矩阵的内容。
高等数学 大纲原文解析
一、函数、极限、连续
考试内容
函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立
数列极限与函数极限的定义及其性质、函数的左极限和右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算、极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极
限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小
量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质
和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
线性代数大纲原文解析
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价、分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
三、向量
考试内容
向量的概念 、向量的线性组合与线性表示 、向量组的线性相关与线性无关、 向量组的极大线性无关组 、等价向量组、 向量组的秩 、向量组的秩与矩阵的秩之间的关系 、向量空间及其相关概念n维向量空间的基变换和坐标变换 过渡矩阵、 向量的内积 、线性无关向量组的正交规范化方法 、规范正交基 、正交矩阵及其性质
考试要求
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解n维向量空间、子空间、基底、维数、坐标等概念.
6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.
概率论与数理统计部分大纲原文解析
一、随机事件和概率考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.
3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布考试内容
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数F(x)=P(X≤x(-x
2理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布B(0p))、几何分布、超几何分布、泊松(Poisson)分布P(2)及其应用.
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a)、正态分布N(u,d子)、指数分布及其应用,其中参数为(A>0的指数分布E()的概率密度为0_j2\",若x>0,
0,若x≤0.
5.会求随机变量函数的分布.
三、多维随机变量及其分布考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边绦概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布N(42;,c3)的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
四、随机变量的M字特征考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函娄的数数学期望.
五、大数定律和中心极限定理考试内容
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoui)大数定律 辛钦(Khinchin)大数定律 棣莫弗-拉普拉斯(DeMoivte-Laplace)定理 列维-林德伯格(LevyLindberg)定理
考试要求
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).
六、数理统计的基本概念考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 t 分布 F分布 分位数 正态总体的常用抽样分布
考试求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义力
s-ax-23
2.了解2分布、t分布和F分布的概念及性质,了解上侧a分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
七、参数估计考试内容
点估计的概念估计量与估计值 矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.
八、假设检验考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验.